532 research outputs found

    Global Soil Changes (Report of an IIASA-ISSS-UNEP Task Force on the Role of Soil in Global Changes)

    Get PDF
    The present report is one of a series of documents by soil scientists in preparation of a coordinated input by the various national and international centers on soil research and management into the International Geosphere-Biosphere Programs (IGBP or "Global Change" Program) initiated by the International Council of Scientific Unions (ICSU)

    Evidence of slow-light effects from rotary drag of structured beams

    Get PDF
    Self-pumped slow light, typically observed within laser gain media, is created by an intense pump field. By observing the rotation of a structured laser beam upon transmission through a spinning ruby window, we show that the slowing effect applies equally to both the dark and bright regions of the incident beam. This result is incompatible with slow-light models based on simple pulse-reshaping arising from optical bleaching. Instead, the slow-light effect arises from the long upper-state lifetime of the ruby and a saturation of the absorption, from which the Kramers–Kronig relation gives a highly dispersive phase index and a correspondingly high group index

    The first contribution on mycophilous fungi from Belarus

    Get PDF
    Two species of zygomycetes, 9 ascomycetes and 11 anamorphic fungi with unknown theleomorph growing on decaying agarics, boletes, polyropes, and Stereum were collected in five sites in central Belarus in September 2004. Among Ascomycota seven species belong to the genus Hypomyces and its anamorphs. The mycophilous fungi are described and illustrated; the descriptions are based on pure cultures and common herbarium sample

    Multiple Transitions to Chaos in a Damped Parametrically Forced Pendulum

    Full text link
    We study bifurcations associated with stability of the lowest stationary point (SP) of a damped parametrically forced pendulum by varying ω0\omega_0 (the natural frequency of the pendulum) and AA (the amplitude of the external driving force). As AA is increased, the SP will restabilize after its instability, destabilize again, and so {\it ad infinitum} for any given ω0\omega_0. Its destabilizations (restabilizations) occur via alternating supercritical (subcritical) period-doubling bifurcations (PDB's) and pitchfork bifurcations, except the first destabilization at which a supercritical or subcritical bifurcation takes place depending on the value of ω0\omega_0. For each case of the supercritical destabilizations, an infinite sequence of PDB's follows and leads to chaos. Consequently, an infinite series of period-doubling transitions to chaos appears with increasing AA. The critical behaviors at the transition points are also discussed.Comment: 20 pages + 7 figures (available upon request), RevTex 3.

    Overview of SRF Deflecting and Crabbing Cavities

    Get PDF
    Developments over the past few years on novel superconducting deflecting and crabbing cavities have introduced advanced rf geometries with improved performance, in comparison to the typical squashed elliptical cavities operating in TM110 type mode. These new structures are compact geometries operating in either TEM type or TE11-like mode. One of the key applications of such cavities is the use of crabbing systems for circular colliders in increasing the luminosity. Crabbing systems are an essential component in future colliders with intense beams and proposed electron-ion colliders. High luminosity upgrade of LHC is planned to implement crabbing systems at two interaction points. Recently, a two-cavity cryomodule with double quarter wave crabbing cavity was installed in SPS at CERN and successfully tested with the proton beam. We present the details of different superconducting deflecting and crabbing cavities and their applications, as well as the recent results of the crabbing systems test at SPS

    Measurement of Surface Resistance Properties With Coaxial Resonators - Review

    Get PDF
    Achieving ever decreasing surface resistance at higher field in superconducting RF accelerating structures is one of most outstanding developments in modern accelerators. The BCS theory has been used widely to estimate the surface resistance and to direct the technology. However, recent research results show that the behavior of the surface resistance further deviates from the BCS theory. So far the study on surface resistance was performed usually with cavities of single frequency which limited the study of frequency dependent surface resistance. The Center for Accelerator Science at Old Dominion University has designed and built several half wave coaxial cavities to study the frequency, temperature, and RF field dependence of surface resistance. TRIUMF in Canada also joined this line of research using such multi frequency quarter wave and half wave coaxial cavities. This type of multi mode cavity will allow us to systematically study the parameters affecting surface resistance on the same cavity surface. In this paper, we review the results ODU and TRIUMF collected so far and proper analysis methods

    Measurement of the Magnetic Field Penetration Into Superconducting Thin Films

    Get PDF
    The magnetic field at which first flux penetrates is a fundamental parameter characterizing superconducting materials for SRF cavities. Therefore, an accurate technique is needed to measure the penetration of the magnetic field directly. The conventional magnetometers are inconvenient for thin superconducting film measurements because these measurements are strongly influenced by orientation, edge and shape effects. In order to measure the onset of field penetration in bulk, thin films and multi-layered superconductors, we have designed, built and calibrated a system combining a small superconducting solenoid capable of generating surface magnetic field higher than 500 mT and Hall probe to detect the first entry of vortices. This setup can be used to study various promising alternative materials to Nb, especially SIS multilayer coatings on Nb that have been recently proposed to delay the vortex penetration in Nb surface. In this paper, the system will be described and calibration will be presented

    Transposon mutagenesis of pseudomonas syringae pathovars syringae and morsprunorum to identify genes involved in bacterial canker disease of cherry

    Get PDF
    Bacterial canker of Prunus, affecting economically important stone fruit crops including cherry, peach, apricot and plum, is caused by the plant pathogen Pseudomonas syringae (P.s.). Strains from two pathovars—P.s. pv. syringae (Pss) and P.s. pv. morsprunorum race 1 (PsmR1) and 2 (PsmR2)—in three phylogenetically distant clades have convergently evolved to infect Prunus. The bacteria enter woody tissues through wounds and leaf scars, causing black necrotic cankers. Symptoms are also produced on blossom, fruit and leaves. Little is known about the mechanisms P.s. uses to colonise tree hosts such as Prunus. Here, we created transposon (Tn) mutant libraries in one strain of P.s. from each of the three clades and screened the mutants on immature cherry fruit to look for changes in virulence. Mutants (242) with either reduced or enhanced virulence were detected and further characterised by in vitro screens for biofilm formation, swarming ability, and pathogenicity on leaves and cut shoots. In total, 18 genes affecting virulence were selected, and these were involved in diverse functions including motility, type III secretion, membrane transport, amino acid synthesis, DNA repair and primary metabolism. Interestingly, mutation of the effector gene, hopAU1, led to an increase in virulence of Psm R

    Problem detection in legislative oversight:An analysis of legislative committee agendas in the U.K. and U.S.

    Get PDF
    This paper outlines a dynamic problem-detection model of legislative oversight where legislative committees engage in information-gathering to identify emerging policy problems. It is argued that activities of legislative committees are responsive to indicators of problem status across a range of policy domains. This enables committees to react to problems before, or at least simultaneously to, citizens. Our analyses use a new dataset on the policy agenda of UK Parliamentary Select Committees in combination with directly comparable data on US Congressional hearings. Aggregate measures of problem status (e.g. GDP, crime rates) and public opinion on the �most important problem� facing the country are used as independent variables. The comparison between a well-established and developing committee system offers insights into common dynamics across institutional contexts. The findings show that committee agendas in both the UK and US are responsive to problem status for the majority of issues

    Numerical convergence of the block-maxima approach to the Generalized Extreme Value distribution

    Full text link
    In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. [2006] have found analytical results.Comment: 34 pages, 7 figures; Journal of Statistical Physics 201
    corecore